

## WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 2nd Semester Supplementary Examination, 2021

## MTMACOR04T-MATHEMATICS (CC4)

Time Allotted: 2 Hours Full Marks: 50

The figures in the margin indicate full marks.

Candidates should answer in their own words and adhere to the word limit as practicable.

All symbols are of usual significance.

## Answer Question No. 1 and any five questions from the rest

1. Answer any *five* questions from the following:

 $2 \times 5 = 10$ 

- (a) Find the particular integral of the differential equation  $(D^2 + 1) y = \cos 2x$ .
- (b) Find the Wronskian of the set  $\{1-x, 1+x, 1-3x\}$ .
- (c) Solve  $p^2 3p + 2 = 0$ ,  $p = \frac{dy}{dx}$ .
- (d) Show that there is a regular singular point of the differential equation

$$(2x+x^3)\frac{d^2y}{dx^2} - \frac{dy}{dx} - 6xy = 0$$
.

- (e) Show that  $\left[\vec{\alpha} + \vec{\beta} \vec{\beta} + \vec{\gamma} \vec{\gamma} + \vec{\alpha}\right] = 2 \left[\vec{\alpha} \vec{\beta} \vec{\gamma}\right]$ .
- (f) Show that the three vectors  $\hat{i} 2\hat{j} + \hat{k}$ ,  $2\hat{i} + \hat{j} 3\hat{k}$  and  $-3\hat{i} + \hat{j} + 2\hat{k}$  are coplanar.
- (g) If the vectors  $\vec{f} = 3x\hat{i} + (x+y)\hat{j} ax\hat{k}$  is solenoidal, then find a.
- (h) Find the directional derivative of the function f(x, y, z) = yz + zx + xy in the direction of the vector  $\vec{u} = \hat{i} 2\hat{j} + \hat{k}$  at the point (1, 2, 0).

2. (a) Solve: 
$$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = 3x^2$$
.

(b) Solve: 
$$\frac{d^3y}{dx^3} - \frac{d^2y}{dx^2} + \frac{dy}{dx} - y = 0$$
.

3. (a) Solve: 
$$x^3 \frac{d^3 y}{dx^3} - x^2 \frac{d^2 y}{dx^2} + 2x \frac{dy}{dx} - 2y = x^3$$
.

(b) Solve: 
$$x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + 4y = \cos(\log x) + x \sin(\log x)$$
.

4. (a) Solve the simultaneous linear equations: 
$$\frac{dx}{dt} - 7x + y = 0$$
,  $\frac{dy}{dt} - 2x - 5y = 0$ .

(b) Solve: 
$$\frac{d^2y}{dx^2} - y = x^2 \cos x$$
.

## CBCS/B.Sc./Hons./2nd Sem./MTMACOR04T/2021

- 5. (a) Prove that  $\left[\vec{\alpha} \times \vec{\beta} \vec{\beta} \times \vec{\gamma} \vec{\gamma} \times \vec{\alpha}\right] = \left[\vec{\alpha} \vec{\beta} \vec{\gamma}\right]^2$ .
- 4+4

5+3

- (b) Show that the four points  $2\hat{i} + 3\hat{j} \hat{k}$ ,  $\hat{i} 2\hat{j} + 3\hat{k}$ ,  $3\hat{i} + 4\hat{j} 2\hat{k}$  and  $\hat{i} 6\hat{j} + 6\hat{k}$  are coplanar.
- 6. (a) Show that the vector  $\vec{F} = (2x yz)\hat{i} + (2y + zx)\hat{j} + (2z xy)\hat{k}$  is irrotational.
  - (b) Verify Green's theorem in a plane for  $\oint \{(x^2 + xy) dx + xdy\}$  where C is the curve enclosing the region bounded by  $y = x^2$  and y = x.
- 7. (a) With the help of vectors prove that the medians of a triangle are concurrent. 4+4
  - (b) Prove that the necessary and sufficient condition for a vector  $\vec{r} = \vec{f}(t)$  to have a constant direction is  $\vec{f} \times \frac{d\vec{f}}{dt} = \vec{0}$ .
- 8. (a) Show that the Wronskian of two solutions of the equation  $\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = 0$ ,  $x \in (a,b)$ , P, Q are functions of x, is either identically zero or never zero on (a,b).
  - (b) Solve:  $\sin^2 x \frac{d^2 y}{dx^2} = 2y$ .
- 9. (a) Solve by using the method of variations of parameters

$$x^{2} \frac{d^{2}y}{dx^{2}} - 2x(1+x)\frac{dy}{dx} + 2(1+x)y = x^{3}$$

where the integrals in the complementary function are x and  $xe^{2x}$ .

(b) Find the integrating factor of the differential equation

$$y(xy + 2x^2y^2) dx + x(xy - x^2y^2) dy = 0$$
.

**N.B.:** Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within I hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.



2

2074